614 research outputs found

    Superfluid turbulence

    Get PDF
    At low temperatures (below 5 Kelvin), helium is a liquid with a very low kinematic viscosity. It was proposed that wind tunnels could be built using liquid helium as the test fluid. The primary advantages of such wind tunnels would be a combination of large Reynolds numbers and a relatively small apparatus. It is hoped that this combination will allow the study of high Reynolds number flows in an academic setting. There are two basic types of liquid helium wind tunnels that can be built, corresponding to the two phases of liquid helium. The high temperature phase (between approximately 2 to 5 Kelvin) is called helium 1 and is a Navier-Stokes fluid. There are no unanswered scientific questions about the design or operation of a wind tunnel in the helium 1 phase. The low temperature phase (below approximately 2 Kelvin) of liquid helium is called helium 2. This is a quantum fluid, meaning that there are some properties of helium 2 which are directly due to quantum mechanical effects and which are not observed in Navier-Stokes fluids. The quantum effects that are relevant to this paper are: (1) helium 2 is well described as a superposition of two separate fluids called the superfluid and the normal fluid. The normal-fluid component is a Navier-Stokes fluid and the superfluid is an irrotational Euler fluid; and (2) circulation in the superfluid exists only in quantized vortex filaments. All quantized vortex filaments have identical circulations kappa and core size a. The objective of the research at CTR was to develop an understanding of the microscopic processes responsible for the observed Navier-Stokes behavior of helium 2 flows

    Enzyme Kinetics of the Mitochondrial Deoxyribonucleoside Salvage Pathway Are Not Sufficient to Support Rapid mtDNA Replication

    Get PDF
    Using a computational model, we simulated mitochondrial deoxynucleotide metabolism and mitochondrial DNA replication. Our results indicate that the output from the mitochondrial salvage enzymes alone is inadequate to support a mitochondrial DNA replication duration of as long as 10 hours. We find that an external source of deoxyribonucleoside diphosphates or triphosphates (dNTPs), in addition to those supplied by mitochondrial salvage, is essential for the replication of mitochondrial DNA to complete in the experimentally observed duration of approximately 1 to 2 hours. For meeting a relatively fast replication target of 2 hours, almost two-thirds of the dNTP requirements had to be externally supplied as either deoxyribonucleoside di- or triphosphates, at about equal rates for all four dNTPs. Added monophosphates did not suffice. However, for a replication target of 10 hours, mitochondrial salvage was able to provide for most, but not all, of the total substrate requirements. Still, additional dGTPs and dATPs had to be supplied. Our analysis of the enzyme kinetics also revealed that the majority of enzymes of this pathway prefer substrates that are not precursors (canonical deoxyribonucleosides and deoxyribonucleotides) for mitochondrial DNA replication, such as phosphorylated ribonucleotides, instead of the corresponding deoxyribonucleotides. The kinetic constants for reactions between mitochondrial salvage enzymes and deoxyribonucleotide substrates are physiologically unreasonable for achieving efficient catalysis with the expected in situ concentrations of deoxyribonucleotides

    Mitochondrial-encoded membrane protein transcripts are pyrimidine-rich while soluble protein transcripts and ribosomal RNA are purine-rich

    Get PDF
    BACKGROUND: Eukaryotic organisms contain mitochondria, organelles capable of producing large amounts of ATP by oxidative phosphorylation. Each cell contains many mitochondria with many copies of mitochondrial DNA in each organelle. The mitochondrial DNA encodes a small but functionally critical portion of the oxidative phosphorylation machinery, a few other species-specific proteins, and the rRNA and tRNA used for the translation of these transcripts. Because the microenvironment of the mitochondrion is unique, mitochondrial genes may be subject to different selectional pressures than those affecting nuclear genes. RESULTS: From an analysis of the mitochondrial genomes of a wide range of eukaryotic species we show that there are three simple rules for the pyrimidine and purine abundances in mitochondrial DNA transcripts. Mitochondrial membrane protein transcripts are pyrimidine rich, rRNA transcripts are purine-rich and the soluble protein transcripts are purine-rich. The transitions between pyrimidine and purine-rich regions of the genomes are rapid and are easily visible on a pyrimidine-purine walk graph. These rules are followed, with few exceptions, independent of which strand encodes the gene. Despite the robustness of these rules across a diverse set of species, the magnitude of the differences between the pyrimidine and purine content is fairly small. Typically, the mitochondrial membrane protein transcripts have a pyrimidine richness of 56%, the rRNA transcripts are 55% purine, and the soluble protein transcripts are only 53% purine. CONCLUSION: The pyrimidine richness of mitochondrial-encoded membrane protein transcripts is partly driven by U nucleotides in the second codon position in all species, which yields hydrophobic amino acids. The purine-richness of soluble protein transcripts is mainly driven by A nucleotides in the first codon position. The purine-richness of rRNA is also due to an abundance of A nucleotides. Possible mechanisms as to how these trends are maintained in mtDNA genomes of such diverse ancestry, size and variability of A-T richness are discussed

    Evaporation of a packet of quantized vorticity

    Full text link
    A recent experiment has confirmed the existence of quantized turbulence in superfluid He3-B and suggested that turbulence is inhomogenous and spreads away from the region around the vibrating wire where it is created. To interpret the experiment we study numerically the diffusion of a packet of quantized vortex lines which is initially confined inside a small region of space. We find that reconnections fragment the packet into a gas of small vortex loops which fly away. We determine the time scale of the process and find that it is in order of magnitude agreement with the experiment.Comment: figure 1a,b,c and d, figure2, figure

    Evaluating purifying selection in the mitochondrial DNA of various mammalian species

    Get PDF
    Mitochondrial DNA (mtDNA), the circular DNA molecule inside the mitochondria of all eukaryotic cells, has been shown to be under the effect of purifying selection in several species. Traditional testing of purifying selection has been based simply on ratios of nonsynonymous to synonymous mutations, without considering the relative age of each mutation, which can be determined by phylogenetic analysis of this non-recombining molecule. The incorporation of a mutation time-ordering from phylogeny and of predicted pathogenicity scores for nonsynonymous mutations allow a quantitative evaluation of the effects of purifying selection in human mtDNA. Here, by using this additional information, we show that purifying selection undoubtedly acts upon the mtDNA of other mammalian species/genera, namely Bos sp., Canis lupus, Mus musculus, Orcinus orca, Pan sp. and Sus scrofa. The effects of purifying selection were comparable in all species, leading to a significant major proportion of nonsynonymous variants with higher pathogenicity scores in the younger branches of the tree. We also derive recalibrated mutation rates for age estimates of ancestors of these various species and proposed a correction curve in order to take into account the effects of selection. Understanding this selection is fundamental to evolutionary studies and to the identification of deleterious mutations

    Polarization of superfluid turbulence

    Full text link
    We show that normal fluid eddies in turbulent helium II polarize the tangle of quantized vortex lines present in the flow, thus inducing superfluid vorticity patterns similar to the driving normal fluid eddies. We also show that the polarization is effective over the entire inertial range. The results help explain the surprising analogies between classical and superfluid turbulence which have been observed recently.Comment: 3 figure

    Universal heteroplasmy of human mitochondrial DNA.

    Get PDF
    Mammalian cells contain thousands of copies of mitochondrial DNA (mtDNA). At birth, these are thought to be identical in most humans. Here, we use long read length ultra-deep resequencing-by-synthesis to interrogate regions of the mtDNA genome from related and unrelated individuals at unprecedented resolution. We show that very low-level heteroplasmic variance is present in all tested healthy individuals, and is likely to be due to both inherited and somatic single base substitutions. Using this approach, we demonstrate an increase in mtDNA mutations in the skeletal muscle of patients with a proofreading-deficient mtDNA polymerase γ due to POLG mutations. In contrast, we show that OPA1 mutations, which indirectly affect mtDNA maintenance, do not increase point mutation load. The demonstration of universal mtDNA heteroplasmy has fundamental implications for our understanding of mtDNA inheritance and evolution. Ostensibly de novo somatic mtDNA mutations, seen in mtDNA maintenance disorders and neurodegenerative disease and aging, will partly be due to the clonal expansion of low-level inherited variants
    corecore